Important Note: This site is designed to work best in Firefox, Safari or Chrome. Please update your browser to view the complete site.

Blog

How to Reduce Gut Activity with Myocardial Perfusion Imaging

Posted on: 11.15.18

We’re all familiar with the obstacles that radiotracers and subsequent gut activity presents during Myocardial Prefusion Imaging. When the radioisotope expands beyond the coronary arteries, it’s difficult to obtain quality SPECT MPI imaging of the heart. It’s a common problem that plagues many patients and physicians. So what do we do?

We’ve heard of everything from half & half, cold water, and even a certain type of soda post injection to reduce the dreaded gut activity. Since we weren’t aware of any tried and true solution, we polled our fellow nuclear specialists on LinkedIn to see if they could provide some tips, tricks and home remedies.

Wait Time is always going to be your best practice to assist with clearance but if that or your go-to response doesn’t always work, check out these suggestions and add them to your list:

Katrina B.
If it is a bowel loop, we give them another cup of cold water and have them walk the hallway if they can. If they have a hiatal hernia or liver disease, we give them a longer wait time prior to scan to try to avoid the need for rescan. And we ask them all not to lay down, but to sit up instead when possible when waiting.

Rhevon L.
In my experience, the most effective method for reducing gut uptake and obtaining separation from the inferior margin is the combination of walking and ice cold water consumption. I have also heard of technologist giving patient’s Boost/Ensure after rest dosing and obtaining great images. This is done at the discretion of exercise stress, however.

Kim L.
Additional cold water – approximately 8 ounces. Drink fast. Walk around for 5-10 minutes, then have the patient lay on their right side to see if the loop will pull away from the bottom half of the heart. I had a tech that worked for me that came from Ohio State, and they would try this. Sometimes it would work and sometimes it wouldn’t. Always feed them. That, of course, helps for most.

Michael B.
We find that waiting is the best remedy but not always practical. Cold water gulped down for resting scan. Snack and a drink for the stress scan. Sometimes, particularly with hot livers, lying the patient on 2 pillows behind the shoulders, raising them will drop the activity away from the heart.

Neda S.
I have used carbonated sodas if walking and drinking water didn’t help. I used to use Diet Sprite, but I guess ginger ale is an option too. For stress images, fatty foods, ice cream, coffee, anything that helps bowel movement.

Patrick B.
I’ve often placed a broad strip of pliable soft lead shielding over the patient’s abdomen at an angle, and this has often helped mitigate proximal intestinal activity. Otherwise, if you have the time, waiting 45-60 minutes post-injection to perform resting MPI has been fairly beneficial.

Jeremy W.
I like for my patients to have a drink of their choice (soda, water, coffee, etc.) and some crackers or small snack before their stress images. Some water only before rest images. Extra wait time for Cardiolite vs. Myoview, especially for liver clearance.



Practical pre-authorization tips for nuclear imaging

Posted on: 10.25.18

In today’s economy, everyone is looking to save money and reduce costs, including insurance companies. This has translated into an increasing level of scrutiny when it comes to ordering nuclear imaging studies.

Pre-authorization is now an accepted part of the process, but the requirements and rules are getting more and more complex. In this post, we’ll take a look at ways to better navigate the process.

The pre-approval process

The pre-approval process is used by health insurance companies to verify that certain drugs, procedures, and services are medically necessary before they’re completed.

The quickest way to gain approval is through strict adherence to appropriate use criteria, but it also requires detailed, clear, and complete documentation in the patient’s clinical record.

Documented records should include the patient’s chief complaints, diagnosis, and the results of prior testing that are consistent with a particular treatment plan.

Major roadblocks and how to avoid them

One of the major hurdles is the amount of time that pre-approvals consume and thus detract from other patient-centered tasks in the office. It’s important for staff to have all the information handy before they start the process. The insurance company will have detailed questions, and the staff will need to provide the appropriate answers in a timely manner.

If an insurance company representative senses any lack of confidence, disorganization, or hesitation on the part of the office staff, they can use that to their advantage, which can quickly slow down the approval process.

It’s expected for insurers to require additional information, and sometimes a peer-to-peer review, when the conversation offers up the opportunity to ask for more. You need to be prepared for the possible roadblocks ahead of time.

If your organization is large enough, staff members tasked with managing pre-authorization can work at developing relationships with insurance representatives from particular companies. Leveraging that relationship and specific payer protocol is a smart idea. Chances are they’ll have a higher rate of success because they’ll know what the insurer is looking for and how to manage it.

The benefits of outsourcing pre-authorization

Frustration and the time investment are some of the most common reasons a practice gives up pursuing in-house pre-approval. To combat those hurdles, many practices outsource the approval process to a third-party, like MDBoss for instance, who specializes in pre-certification.

For a practice that lacks the manpower, does not have experienced staff, or the time to spend on the phone with insurers, it can be a cost-effective solution. Many outsourced providers charge based on a per-study basis so even small clinics can leverage the service without worrying about minimums or expensive retainers.

The insurance landscape is continually changing. Many insurers are hiring third-parties themselves to manage their approval process. There is also a push from some insurers, like Humana, BCBS, and Cigna, for locations to become approved test sites. It requires a lengthy summary that includes camera serial numbers, staff credentials, certifications, and other key information, that can easily overload small practices.

The pre-certification or pre-authorization process is an essential part of the services that a physician’s office provides to their patients. There are ways to make the process run smoother, but it takes time, dedicated staff, and a lot of patience.

If your in-house attempts are not producing the desired results, determine the most common hurdles and work quickly to overcome them. It’s in the best interest of your business, your patient’s health, and their financial well-being.



A Closer Look at the Digirad Ergo (Infographic)

Posted on: 08.23.18

Download a PDF version of this infographic



Seven mistakes to avoid when choosing between a new and refurbished nuclear camera

Posted on: 04.26.18

With the continual advancements in healthcare technology and service, investing in your cardiac practice, upgrading equipment, and improving efficiency is an ongoing process. One of the most significant considerations is not only when to replace a camera, but also if refurbished, or new equipment might be a better decision.

It’s important to take the time to look beyond your immediate imaging needs and consider the long-term goals of your practice. Both refurbished and new camera systems come with advantages, but be sure to consider these factors before signing on the dotted line:

1. Focusing only on purchase price vs. the long-term cost of ownership

A nuclear gamma camera is a significant investment for any practice, so it’s natural to focus on the cost. There are times when prioritizing price is a smart idea, but only when the product still retains an acceptable level of value. There are many refurbished cameras that have a considerable amount of life left and could be a wise investment.

When you evaluate new versus used equipment, consider how much image quality has improved in recent years, the availability of new software programs, and the viability of the camera’s current operating system. When the camera is in need of repair, will parts be readily available and will the manufacturer agree to service it? Some manufacturers include a firm end-of-service date on their equipment, which leaves you at the mercy of third-party service providers and replacement parts. Some service companies may even decline service because of age, limited part availability, and the associated risk.

2. Overlooking the ability to maintain image quality

Older, refurbished cameras may undoubtedly be in working order, but their boards and analog methodologies could be less effective. With age, the camera’s light pipe, which includes crystals that eventually yellow and crack, will no longer respond, sometimes without warning. Replacement crystals for older cameras may not be available. Even with newer refurbished cameras, the crystals have already aged, may be hydrated, and are potentially unfixable. Be sure to inquire about and examine the crystals if you’ve considering a refurbished camera.

3. Putting your HIPAA compliance at risk

Another important factor to consider is HIPAA compliance. Many refurbished cameras cannot be upgraded to current software versions, and, because they’re no longer supported by the manufacturer, they can’t they be patched securely. Consequently, the camera cannot be connected to a network because internet access imposes new risks. You also may not be able to add additional processing programs and, in the end, may be forced to purchase an entirely new software package, which will be costly.

4. Not factoring in the credit rating of the practice

While many physicians may have excellent credit, they may not be willing to put their personal credit history on the line when purchasing capital equipment such as a nuclear gamma camera. Instead, they opt to leverage the business credit, and this can have a direct impact on the approval process and interest rate.

If the practice does not have an extensive credit history, it’s more challenging to secure a loan, and interest rates are likely higher on pre-owned equipment. Additionally, if a financial institution feels that you may have issues with part availability on refurbished systems, they may be hesitant to approve a loan for older medical equipment. Be sure to discuss the details and get loan pre-approval before the sales process begins.

5. Failing to consider the true patient volume

Volume is another important factor to evaluate when deciding between used or new equipment-or even whether to outsource your imaging services completely. Not all cardiac practices need a camera on site five days a week. If you’re imaging one, two, or even three days a week, you might consider partnering with a mobile imaging company.

Your volume should factor into your financial investment. Without it, the lack of revenue wouldn’t warrant spending dollars on maintenance costs and might eventually lead to a decline in the integrity of the equipment.

6. Purchasing camera that offers limited use

Any new or used camera that you plan to purchase should be able to expand and grow with your practice. A camera should be able to fill your current imaging needs, but also serve your practice in other ways. Would it lend itself to increased productivity, improved efficiency, and greater patient satisfaction? Sometimes it may be worth the extra investment if it allows you to move forward on another strategy that has the potential to increase revenue or to reach other goals.

7. Not performing your own due diligence

Lastly, knowing from whom you’re purchasing your equipment is of critical importance. An investment of this size should only be made through a reputable company with a proven track record, especially if it’s a refurbished camera. Prepare a due diligence checklist and take the time to get better acquainted with the camera, just as you would with a home, used car, or any other purchase in the second-hand market. Ask to see it, or have it inspected by an independent service company, and ask for the repair and maintenance records.

It’s well within your rights to investigate the camera’s history, current value, and the likelihood of any future issues before making a final commitment. If you don’t, you’re exponentially increasing your chance of winding up with a lemon and having no recourse.

Cost shouldn’t be the only consideration when buying a camera. It may be high on your list, but the value it brings to your practice should be well worth the money you spend.



Intraoperative benefits of Ergo touted in the Journal of Pediatric Surgery

Posted on: 03.15.18

The portability of the Digirad Ergo Imaging System is making a significant impact in the pediatric oncology world. The Journal of Pediatric Surgery recently published an article on its intraoperative use. Most notably, it reported on how nuclear imaging with the Ergo effectively reduces the time under anesthesia and offers real-time confirmation of lesion removal. Digirad recently spoke with Dr. Marcus M. Malek of Children’s Hospital of Pittsburgh of UPMC, to further elaborate on the study.

Single environment reduces time under anesthesia

In order to guide lymph node biopsy, pre-surgery lymphatic mapping is done via lymphoscintigraphy. Adults and teens are generally able to tolerate the procedure while awake. It does, however, involve an injection and the need to remain still, which can often be difficult for a child. For that reason, young pediatric patients, and some adults for that matter, are sedated and mapped in the nuclear medicine suite and then transported to the operating room. The additional step takes a considerable amount of time and coordination, which leads to downtime in the OR.

The portability of the Digirad Ergo allows the patient to be anesthetized while they’re in the operating room. Prior to the start of the surgery, the nuclear medicine technologist or physician injects the radiotracer in standard fashion. After the tracer has moved to the area of interest, the Ergo acquires the images needed for the lymphoscintgraphy. Once the sentinel nodes are marked and the area is prepped, the surgery can begin without delay. When the procedure and the surgery are done in one environment, it’s safer for the patient, spares them additional time under anesthesia, and alleviates the need for transport.

Visual confirmation in real-time

Beyond reduced anesthesia time, a camera in the operating room allows the surgeon to confirm the lesion of interest has been removed in real time. Certainly, a preoperative lymphoscintigraphy can help with mapping, but it cannot visually confirm the lesion’s removal. The Ergo allows confirmation of lesion removal or, in some cases, identification of lesions that were thought to be removed or hidden behind another. Visual representation is a fail-safe that ultimately improves surgical outcome.

In the past, some have equated portability with lower quality images, but the Digirad Ergo doesn’t trade one benefit for another. It delivers high-quality images that technologists say rival any static nuclear camera and its compact, portable design offers maximum clinical versatility.

Read the full article, Use of intraoperative nuclear imaging leads to decreased anesthesia time and real-time confirmation of lesion removal , at the Journal of Pediatric Surgery.



A Closer Look at the Digirad X-ACT+ (Infographic)

Posted on: 03.01.18

Download a PDF version of this infographic

 



Is a single-head camera acceptable in today’s market?

Posted on: 01.25.18

As nuclear cardiac imaging technology has evolved, gamma cameras have graduated from single-head to multiple-head detector technology. Although single-head SPECT cameras are not necessarily obsolete, there are an increasing number of drawbacks if you choose to continue using it to diagnose cardiac patients.

Dual-head cameras reduce scan time by half, simply because there are two heads. Each rotation is only 90 degrees compared to a single-head that is responsible for the full 180 degrees. A triple-head camera can complete a scan in about one-third of the time of a single-head camera.

The popularity of Gated SPECT

In years past, higher vs. lower volume dictated the need for a single or dual-head camera. But, as technology evolved, gated SPECT (GSPECT) became state-of-the-art and grew into one of the most frequently performed procedures in nuclear cardiology. The additional combined minutes of scan time needed to gain enough count density was significantly improved with a multi-head camera.

Nuclear medicine is, by all counts, a low statistic science. Anything done to lower the statistic results in an inferior image, and consequently, anything done to increase the statistic improves the image. The goal is to use as little dosing or time as possible to reach the medical diagnosis. By using a multi-head camera, you may increase the total counts per stop, thereby improving the counting statistics with a significantly shorter total scan time and/or lower dose, resulting in a better image.

From the patient’s perspective

Time is not only relative to the procedure and your overall volume, but it’s also important to patients. A higher quality outcome completed in less time leaves the patient with a better overall experience. It also allows them to be more compliant during the scan. A patient who can remain still results in a better image than one from a patient who moves, even if the image is motion corrected. In fact, the correction itself can create artifacts. Consider the practicality, too. When a patient is uncomfortable or in pain, a procedure that finished even five minutes sooner could make a world of difference.

Improving your single-head camera

Over the last decade, advanced reconstruction algorithms, like Digirad’s nSPEED™, have been developed to mathematically improve statistics. Today, if your single-head camera doesn’t include the algorithm, you can invest in a software package, which can increase the speed of the scan time without degrading the image.

While software upgrades can lead to improvements of a single-head camera, a multi-head camera is still faster, includes higher statistics, and results in a better image. You also won’t benefit from all the other advantages should you have chosen to replace your equipment. It simply might not be the best available use of your time, energy, or money.

Upgrading in today’s market

If you upgrade your equipment to a dual or triple-head camera, your advantages are significant.

Today, advanced reconstruction algorithms are standard features, so you’re choosing to improve the image quality in half the time, thereby increasing your lab’s overall efficiency. You’ll also have access to the latest versions of software.

A dual or triple head camera also gives the technologist the flexibility to deliver the very best image. A multi-head camera with an advanced reconstructive algorithm can offer improved image quality and lead to a more confident and accurate diagnosis. Additionally, with tools like Digirad’s TruACQ Count-based Imaging™, each scan is fully personalized to each patient by quickly reading the activity originating from the myocardium prior to the scan, and recommending the appropriate seconds per stop to meet ASNC count density guidelines. This individualized care doesn’t prolong the technologist’s workday because they have the tools to do the best job possible.

Upgrading is not just about how many detector heads your system has. It’s investing in a better and more sophisticated way to deliver nuclear cardiology.



What to do when your volumes are low and you still own a camera

Posted on: 11.02.17

During the late 1990s and 2000s, many practices chose to purchase a cardiac camera. Reimbursement rates were consistent, testing volumes were high, and from both a patient care and an economic perspective, it made sense to invest in the equipment.

Shortly thereafter, a series of changes in the industry made ownership more challenging. Major insurance companies instituted a cut in nuclear cardiology reimbursements, payers implemented strict imaging pre-authorization requirements, and additional accreditations became required to operate a nuclear lab.

These shifts in the market have made ownership more challenging for physicians that still own their nuclear camera. While many practices may no longer have a loan left on their camera, they still have costs associated with its use, including the licensing, physics consultation, monthly maintenance, isotopes, consumables, and the technologists. The question many doctors have is “What do I do now?”

How are physicians addressing the problem?

Physicians have turned to a number of approaches to address the problem of increased costs and reduced reimbursements. These approaches include:

Staff Changes: Reducing the number of technologists is the obvious and first choice for physicians looking to reduce costs. If you’re seeing a drop in imaging volume, it only makes sense to have the staffing choices be based on that number.

Reduce Imaging Days: If you have a camera sitting in the office it may seem like offering imaging every day makes sense, but that decision can easily drive up costs. Bundling patients and scheduling them for specific days is a way to increase efficiency. Making this move can allow you to make your technologists part-time and keep the existing team vs. letting parts of the team go. Only paying for one or two days a week is much more cost effective if volumes are down.

Negotiating Lower Rates: Some practices have had success with negotiating lower rates on isotopes, consumables, and supplies. Additionally, the cost of the physicist and audits is negotiable so that can be an area to explore. The limiting factor with this method is leverage. Smaller practices that purchase a limited amount of supplies will not get the discount that larger practices may receive.

Partial Outsourcing: Many physicians are turning to outsourcing and bringing in outside vendors to provide elements of the service, particularly around staffing. By not having the full-time employee obligations they can easily scale their expenses to match volume. The quality and the consistency of the technologists are critical here because the team is a reflection of the practice when they’re imaging patients.

The Benefits of Comprehensive Outsourcing

Comprehensive outsourcing is a bigger decision, but it’s one that could result in the greatest cost savings. Under a comprehensive outsourcing arrangement, the outsourcing provider delivers the staff, consumables, accreditation, radiation materials license, etc. Patients are imaged at your office, but the financial burden of operating the nuclear lab is on the outsourcing partner, not your practice. Financially this works because the provider is paid a percentage of the reimbursement, so the upside is much clearer. Image and you earn a profit, don’t image and there is no penalty.

Programs such as Digirad Select provide a nuclear medicine technologist or cardiac stress technician that handles the imaging in your office, with your existing camera. Other package options include equipment, licensing, supplies, pre-authorizations, repair and maintenance, and accreditation.

Comprehensive outsourcing providers, like Digirad, are able to make the numbers work largely due to leverage. By working with thousands of practices across the country, the rates they are charged are lower, and this creates efficiencies that lower costs and increase the quality of the service.

Regardless of the options you choose to implement, it’s important to stay ahead of trends in both technology and the reimbursement landscape. Managing your overhead will protect your ability to help future patients as the market evolves.



How is PET/CT different from traditional PET imaging?

Posted on: 10.12.17

Today, most of the Positron Emission Tomography (PET) scanners you find in hospitals, or delivered via mobile imaging, are actually PET/CT cameras. Modern PET/CT scanners combine both PET and Computed Tomography (CT) scans almost simultaneously to provide a greater amount of clinical data to assist in the diagnosis process.

Combining the benefits of PET and CT

A PET/CT scan includes two parts: a PET scan and a CT scan. The CT portion of the scan produces a 3-D image that shows a patient’s anatomy. The PET scan demonstrates function and what’s occurring on a cellular level. The PET scan is unique because it images the radiation emitted from the patient while the CT records anatomical x-rays, showing the same area from another perspective.

The role of attenuation correction

PET/CT scans not only pinpoint localization; they also offer significant help with attenuation correction, a huge advantage. During a CT scan, the system records numbers, called Hounsfield units, which measure the density of the tissue that it travels through. Not only does the CT produce images, but they also have numbers assigned to each individual pixel.

The PET scan measures the level of radiation coming from the patient and compiles information that the system needs to decipher. It uses algorithms and corrections, including the Hounsfield units from the CT scan, and adjusts the images in accordance with the corrected densities for each region.

In the 1990’s or early 2000’s, a PET-only scan would have used a transmission scan for attenuation correction or forgone it completely. Today, however, there is better technology available. Using both CT and PET to cross-check data and corroborate each other is a way to increase confidence and reduce guesswork. It gives significantly more data points to reference in order to determine a diagnosis and treatment plan.

PET/CT is more than just oncology

One of the biggest misconceptions about PET/CT is that its benefits are limited to diagnosing cancer. There are many new uses that are benefiting from PET/CT technology that fall outside of oncology. For example, in neurology, a brain CT or MRI only looks at the structure. The benefit of looking at function through an FDG-PET scan is that a functional change on the cellular level will be seen before a possible structural change. The same can be said for cardiac imaging, epilepsy, Alzheimer’s disease, dementia, infection and inflammation and a host of others. These are areas that could benefit from taking advantage of the advancements in the PET/CT world.



How to reduce your dose with SPECT MPI studies

Posted on: 10.05.17

Advancements in medical imaging technology have revolutionized health care, allowing doctors to more accurately diagnose disease using SPECT for MPI scans. Any time a physician orders an imaging scan, however, there is always concern about the level of radiation exposure.

ASNC and SNMMI are raising the bar with their guidelines, and the industry as a whole is moving toward a low dose standard. What does that mean and how will that change impact your practice? Here are some resources that will help you better understand and adopt a low dose protocol.

Implementing a low-dose protocol (link)

If you are considering the implementation of a low-dose protocol, you’ll need to evaluate three important elements within your practice: proper patient segmentation, commitment, and technology.

Patient Segmentation

Proper patient segmentation is a large part of implementing a low-dose protocol because each patient is a unique combination of age, weight, shape and medical history. Did you know that ASNC estimates half of the patient population falls under the appropriate criteria for low-dose? Following the ASNC guidelines can help physicians decide when to reduce radiation exposure in order to optimize patient care.

Commitment

It only takes one physician to publicly advocate low-dose imaging to get the conversation started. With this progressive thinking, however, your practice will have to collectively adopt a new low-dose culture. The physicians, both referring and reading, must be committed to a low-dose protocol in order to successfully implement the change. It will require further education, training, leadership, discipline and diligence along with a “can-do” attitude from all parties.

Technology

With a low-dose protocol, the goal is to acquire an image with sufficient quality for maintaining diagnostic accuracy. Maintaining image quality while reducing the patient dose is a challenge, but new technology makes it possible. A multi-head camera, combined with nSPEED reconstruction software and Tru-ACQ Count Based Imaging provides fast acquisition times with the lowest appropriate dose.

TruACQ Count Based Imaging™ is the first and only count-based SPECT imaging technique that ensures consistent counts for every patient study, regardless of the patient’s size, weight, or the dose used. The proprietary software is designed to simplify the decision-making process around acquisition time. TruACQ™ takes a quick look at exactly what the detectors are picking up, which accounts for all possible variables, and provides the optimal scan time for the patient being imaged. The result is the highest quality image in the shortest amount of time.

Stress-Only Protocol (link)

Another way to help lower the radiation burden to patients is to adopt a stress-only protocol. Stress-only protocol is the directive by which a medical provider performs a cardiac stress test without the complementary resting scan. Traditionally, both a resting scan and a stress scan are performed on patients, which are then compared to more confidently support a diagnosis. Often, what could potentially be an abnormality in one image is disproved by the other, thereby reducing inaccurate conclusions. It does, however, subject the patient to two radiation doses, sometimes unnecessarily.

Those with a low probability of heart disease, typically younger patients who have limited risk factors, are the ideal candidates to forgo the resting scan and follow the stress-only protocol. Not only does the protocol support the global drive to decrease the radiation burden to patients, it also reduces costs, and saves time.

Easing concerns (link)

The word radiation may stir-up heightened concerns, especially if a patient is having multiple tests performed. How much radiation is considered safe and over what time period? Do some tests bring greater exposure than others? At what point should they become concerned? These are all valid questions. The bottom line is that medical imaging is a safe, painless, and cost-effective way to diagnose and treat disease.

Is there a real risk?

Any medical procedure can have side effects, but when the procedure offers useful clinical information that will help your physician decide on your treatment, the benefits of the procedure far outweigh its very small potential risk.

The decision to implement a low-dose protocol is an important step for both you and your patients. Keep in mind that not every patient is required to be low-dose for your practice to be considered a low-dose lab. In the end, it’s about lowering the radiation burden to your patients more than you are now.



Digirad — Revolutionary solid-state nuclear cardiology equipment and services.

Making Healthcare Convenient. As Needed. When Needed. Where Needed.